CIP and MIQP Models for the Load Balancing Nurse-to-Patient Assignment Problem

نویسندگان

  • Wen-Yang Ku
  • Thiago Pinheiro
  • J. Christopher Beck
چکیده

The load balancing nurse-to-patient assignment problem requires the assignment of nurses to patients to minimize the variance of the nurses’ workload. This challenging benchmark is currently best solved exactly with constraint programming (CP) using the spread constraint and a problem-specific heuristic. We show that while the problem is naturally modelled as a mixed integer quadratic programming (MIQP) problem, the MIQP does not match the performance of CP. We then develop several constraint integer programming (CIP) models that include bounds propagation, linear relaxations, and cutting planes associated with the quadratic, gcc, and spread global constraints. While the quadratic and gcc techniques are known, our additions to the spread constraint are novel. Our empirical results demonstrate that the CIP approach substantially out-performs the MIQP model, but still lags behind CP. Finally, we propose a simple problem-specific variable ordering heuristic which greatly improves the CIP models, achieving performance about an order of magnitude faster than CP and establishing a new state of the art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a multi-objective mixed-model assembly line balancing and sequencing problem

This research addresses the mixed-model assembly line (MMAL) by considering various constraints. In MMALs, several types of products which their similarity is so high are made on an assembly line. As a consequence, it is possible to assemble and make several types of products simultaneously without spending any additional time. The proposed multi-objective model considers the balancing and sequ...

متن کامل

Simultaneous Multi-Skilled Worker Assignment and Mixed-Model Two-Sided Assembly Line Balancing

This paper addresses a multi-objective mathematical model for the mixed-model two-sided assembly line balancing and worker assignment with different skills. In this problem, the operation time of each task is dependent on the skill of the worker. The following objective functions are considered in the mathematical model: (1) minimizing the number of mated-stations (2), minimizing the number of ...

متن کامل

An algorithm for integrated worker assignment, mixed-model two-sided assembly line balancing and bottleneck analysis

This paper addresses a multi-objective mixed-model two-sided assembly line balancing and worker assignment with bottleneck analysis when the task times are dependent on the worker’s skill. This problem is known as NP-hard class, thus, a hybrid cyclic-hierarchical algorithm is presented for solving it. The algorithm is based on Particle Swarm Optimization (PSO) and Theory of Constraints (TOC) an...

متن کامل

Scalable Load Balancing in Nurse to Patient Assignment Problems

This paper considers the daily assignment of newborn infant patients to nurses in a hospital. The objective is to balance the workload of the nurses, while satisfying a variety of side constraints. Prior work proposed a MIP model for this problem, which unfortunately did not scale to large instances and only approximated the objective function, since minimizing the variance cannot be expressed ...

متن کامل

Online Distribution and Load Balancing Optimization Using the Robin Hood and Johnson Hybrid Algorithm

Proper planning of assembly lines is one of the production managers’ concerns at the tactical level so that it would be possible to use the machine capacity, reduce operating costs and deliver customer orders on time. The lack of an efficient method in balancing assembly line can create threatening problems for manufacturing organizations. The use of assembly line balancing methods cannot balan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014